A Bayesian hierarchical model for categorical data with nonignorable nonresponse.
نویسندگان
چکیده
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.
منابع مشابه
Empirical Likelihood Estimation for Samples with Nonignorable Nonresponse
Nonresponse is very common in survey sampling. Nonignorable nonresponse, a response mechanism in which the response probability of a survey variable Y depends directly on the value of Y regardless of whether Y is observed or not, is the most difficult type of nonresponse to handle. The population mean estimators ignoring the nonrespondents typically have heavy biases. This paper studies an empi...
متن کاملA Hierarchical Bayesian Nonresponse Model for Binary Data with Uncertainty about Ignorability
First, we consider two Bayesian hierarchical models for binary nonresponse data which are clustered within a number of areas. While the first model assumes that the nonresponse mechanism is ignorable, the second assumes it to be nonignorable. Then, we introduce our best model through a continuous model expansion on an odds ratio (odds of success among respondents versus odds of success among al...
متن کاملOn the impact of nonresponse in logistic regression: application to the 45 and Up study
BACKGROUND In longitudinal studies, nonresponse to follow-up surveys poses a major threat to validity, interpretability and generalisation of results. The problem of nonresponse is further complicated by the possibility that nonresponse may depend on the outcome of interest. We identified sociodemographic, general health and wellbeing characteristics associated with nonresponse to the follow-up...
متن کاملBayesian Estimation of a Proportion under Nonignorable Nonresponse
We use a Dirichlet process prior (DPP) to restrict the pooling of nonresponse binary data from small areas which may seem to be similar. Our objective is to estimate the proportion of individuals with a particular characteristic from each of a number of areas under nonignorable nonresponse. All hyperparameters have proper prior densities. The griddy Gibbs sampler is used to perform the computat...
متن کاملDiscrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference
Nonmonotone missing data arise routinely in empirical studies of social and health sciences, and when ignored, can induce selection bias and loss of efficiency. In practice, it is common to account for nonresponse under a missing-at-random assumption which although convenient, is rarely appropriate when nonresponse is nonmonotone. Likelihood and Bayesian missing data methodologies often require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 59 4 شماره
صفحات -
تاریخ انتشار 2003